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Art and Emotions
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“A work of art which did not begin in emotion is not art” — Paul Cézanne

% Evoked emotion in viewers highly subjective.

« Variations in individual aesthetic experiences studied for

observers using combination of fMRI and behavioral analysis [1l.

% Art pieces from Wikiart annotated for 20 emotions and likeability

o,

[2].

% Subjectivity can be handled by explanation of why certain

emotion was felt by a viewer [3]

[1]: Vessel et.al : The brain on art: intense aesthetic experience activates the default mode network, Link
[2] Mohammad et.al: WikiArt Emotions: An Annotated Dataset of Emotions Evoked by Art, Link
[3] Achiloptas et.al: ArtEmis: Affective Language for Visual Art, Link

[ ‘her smile and hands and background are very calming’ }

Emotion label: Contentment @
N

i feelamusement because the expression on the woman 's face
looks as if she wants to laugh at something but needs to sit still

Emotion label: Amusement /2 &)

&

‘the details in the fabric and the hands'

Emotion label: Awe ;.;

Different captions and emotions associated with Monalisa painting
from Artemis dataset [3]. Image source: Wikiart link
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https://www.frontiersin.org/articles/10.3389/fnhum.2012.00066/full
http://saifmohammad.com/WebPages/wikiartemotions.html
https://www.artemisdataset.org/
https://www.wikiart.org/en/leonardo-da-vinci/mona-lisa
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Explanations-only vs Multimodal cues

% Complementary cues present in text and image:

» Perceptually affective cues in images

+ Direct signal about felt emotion in text caption.

% Emotion prediction using BERT based text classifier:

‘sadness”

% The artwork image when taken into context along

with the caption evokes a feeling of “contentment” .

calm water

Sea-coast Crimean coast near Ai-petri painting by Ivan Aivazovsky. Image source: Wikiart link

Image-centric Affective cues Text caption \

[ Objects ] [ Expression ] It makes me think of how things
used to be and how simple life

Style ][ Technique ]

[
-

Caption source: Artemis dataset Link



https://www.wikiart.org/en/ivan-aivazovsky/sea-coast-crimean-coast-near-ai-petri-1890
https://www.artemisdataset.org/

Sl sIcCVomi

USCUniversity of 1
' Southern Caht%;rma @

Multimodal Model adaptations
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[1] Kiela e.al . Supervised Multimodal Bitransformers for Classifying Images and Text. Link


https://arxiv.org/abs/1909.02950
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Results

Model Acc F1 Feat
Image (N =79327)
VGG-16 47.36 27.04
ResNet-50 4498 21.31
BERT 66.2 61.42
Multimodal (N = 429431)
Early fusion avg pool  56.35 46.72 BU+Bert
Early fusion first token 56.98 48.34 BU+Bert
Weighted late fusion ~ 65.14  60.27 BU+Bert
MMBT 66.33 62.24 BU+Bert
Visual BERT 66.03 61.47 VinVL+Bert

% Settings:

[1] Achiloptas et.al: ArtEmis: Affective Language for Visual Art, Link

BUI2]: 2048 dim region features from top-50 salient regions using FasterRCNN with ResNet101 backbone.
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< Experiments conducted on Artemis :

81446 art-work from Wikiart.

27 art styles from 15t to 215t century.
9 emotion classes.

429k textual captions.

Train/val/test split same as [1l.

VinVLI3l: 2048 dim region features from top-50 salient regions using ResNeXt-152 C4 model.

Bert: 768 dim token representations from pretrained BERT-base uncased model.

8] [ood

KL-Divergence loss used for image-only models between network outputs and per-image distribution of emotions.

Categorical cross-entropy with label smoothing used for training the multimodal models.

[21 Anderson et.al: Bottom-up and top-down attention for image captioning and visual question answering, Link

[3] Zhang et.al: Vinvl: Revisiting visual representations in vision-language models, Link


https://www.artemisdataset.org/
https://arxiv.org/abs/1707.07998
https://arxiv.org/abs/2101.00529
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amusement
awe
contentment
excitement
anger
disgust

fear

sadness

something else
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(A) Confusion matrix of BERT (text-
based classification)

(B) Confusion matrix of MMBT (red
circles indicate classes where MMBT
performs better)
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Majority GT class: awe
Predicted class: awe

Majority GT class: sadness  Caption: ‘it makes me think of how things used to be and

Predicted class: sadness  how simple life once was”

(2)

GT class: contentment Predicted class: contentment
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( (A) : VGG-16: Grad cam visualization for

correctly predicted class “awe".

:I>| (B) : VGG-16: Grad cam visualization for

1
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I VGG-16 for correctly predicted class I
‘sadness’. _ I

I 1T N\
I (C):MMBT: Top-3image regions in ‘;/ Wﬁ\ \ I
I gradient based attributions (1)-(3) for ¢ /‘/
\ correctly predicted class ‘contentment 71
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summary

% Single stream multimodal models like MMBT and VisualBERT perform better when compared with dual-stream

multimodal models and image-only models.
% Predicting a single emotion label from an art-work image is difficult due to multiple interpretations.

% On the visual side, art-style based and holistic image features along the lines of color, lighting can improve emotion

understanding from art-work.
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